Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
2.
Hepatol Commun ; 8(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38619448

RESUMEN

Alpha-fetoprotein (AFP) is a glycoprotein that plays an important role in immune regulation with critical involvement in early human development and maintaining the immune balance during pregnancy. Postfetal development, the regulatory mechanisms controlling AFP undergo a shift and AFP gene transcription is suppressed. Instead, these enhancers refocus their activity to maintain albumin gene transcription throughout adulthood. During the postnatal period, AFP expression can increase in the setting of hepatocyte injury, regeneration, and malignant transformation. It is the first oncoprotein discovered and is routinely used as part of a screening strategy for HCC. AFP has been shown to be a powerful prognostic biomarker, and multiple HCC prognosis models confirmed the independent prognostic utility of AFP. AFP is also a useful predictive biomarker for monitoring the treatment response of HCC. In addition to its role as a biomarker, AFP plays important roles in immune modulation to promote tumorigenesis and thus has been investigated as a therapeutic target in HCC. In this review article, we aim to provide an overview of AFP, encompassing the discovery, biological role, and utility as an HCC biomarker in combination with other biomarkers and how it impacts clinical practice and future direction.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Adulto , Femenino , Humanos , Embarazo , alfa-Fetoproteínas/genética , Carcinogénesis/genética , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Hepatocitos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética
3.
Placenta ; 150: 8-21, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38537412

RESUMEN

INTRODUCTION: Fetal sex affects fetal and maternal health outcomes in pregnancy, but this connection remains poorly understood. As the placenta is the route of fetomaternal communication and derives from the fetal genome, placental gene expression sex differences may explain these outcomes. OBJECTIVES: We utilized next generation sequencing to study the normal human placenta in both sexes in first and third trimester to generate a normative transcriptome based on sex and gestation. STUDY DESIGN: We analyzed 124 first trimester (T1, 59 female and 65 male) and 43 third trimester (T3, 18 female and 25 male) samples for sex differences within each trimester and sex-specific gestational differences. RESULTS: Placenta shows more significant sexual dimorphism in T1, with 94 T1 and 26 T3 differentially expressed genes (DEGs). The sex chromosomes contributed 60.6% of DEGs in T1 and 80.8% of DEGs in T3, excluding X/Y pseudoautosomal regions. There were 6 DEGs from the pseudoautosomal regions, only significant in T1 and all upregulated in males. The distribution of DEGs on the X chromosome suggests genes on Xp (the short arm) may be particularly important in placental sex differences. Dosage compensation analysis of X/Y homolog genes shows expression is primarily contributed by the X chromosome. In sex-specific analyses of first versus third trimester, there were 2815 DEGs common to both sexes upregulated in T1, and 3263 common DEGs upregulated in T3. There were 7 female-exclusive DEGs upregulated in T1, 15 female-exclusive DEGs upregulated in T3, 10 male-exclusive DEGs upregulated in T1, and 20 male-exclusive DEGs upregulated in T3. DISCUSSION: This is the largest cohort of placentas across gestation from healthy pregnancies defining the normative sex dimorphic gene expression and sex common, sex specific and sex exclusive gene expression across gestation. The first trimester has the most sexually dimorphic transcripts, and the majority were upregulated in females compared to males in both trimesters. The short arm of the X chromosome and the pseudoautosomal region is particularly critical in defining sex differences in the first trimester placenta. As pregnancy is a dynamic state, sex specific DEGs across gestation may contribute to sex dimorphic changes in overall outcomes.

4.
Biol Reprod ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38271627

RESUMEN

The placenta, composed of chorionic villi, changes dramatically across gestation. Understanding differences in ongoing pregnancies are essential to identify the role of chorionic villi at specific times in gestation and develop biomarkers and prognostic indicators of maternal-fetal health. The normative mRNA profile is established using next-generation sequencing of 124 first trimester and 43 third trimester human placentas from ongoing healthy pregnancies. Stably expressed genes not different between trimesters and with low variability are identified. Differential expression analysis of first versus third trimester adjusted for fetal sex is performed, followed by a subanalysis with 23 matched pregnancies to control for subject variability using the same genetic and environmental background. Placenta expresses 14,979 polyadenylated genes above sequencing noise (TPM > 0.66), with 10.7% stably expressed genes across gestation. Differentially expressed genes account for 86.7% of genes in the full cohort (FDR < 0.05). Fold changes highly correlate between the full cohort and subanalysis (Pearson = 0.98). At stricter thresholds (FDR < 0.001, fold change>1.5), there remain 50.1% differentially expressed genes (3353 upregulated in first and 4155 upregulated in third trimester). This is the largest mRNA atlas of healthy human placenta across gestation, controlling for genetic and environmental factors, demonstrating substantial changes from first to third trimester in chorionic villi. Specific differences and stably expressed genes may be used to understand the specific role of the chorionic villi throughout gestation and develop first trimester biomarkers of placental health that transpire across gestation, which can be used for future development of biomarkers for maternal-fetal health.

5.
Am J Obstet Gynecol ; 230(4): 443.e1-443.e18, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38296740

RESUMEN

BACKGROUND: Placenta accreta spectrum disorders are associated with severe maternal morbidity and mortality. Placenta accreta spectrum disorders involve excessive adherence of the placenta preventing separation at birth. Traditionally, this condition has been attributed to excessive trophoblast invasion; however, an alternative view is a fundamental defect in decidual biology. OBJECTIVE: This study aimed to gain insights into the understanding of placenta accreta spectrum disorder by using single-cell and spatially resolved transcriptomics to characterize cellular heterogeneity at the maternal-fetal interface in placenta accreta spectrum disorders. STUDY DESIGN: To assess cellular heterogeneity and the function of cell types, single-cell RNA sequencing and spatially resolved transcriptomics were used. A total of 12 placentas were included, 6 placentas with placenta accreta spectrum disorder and 6 controls. For each placenta with placenta accreta spectrum disorder, multiple biopsies were taken at the following sites: placenta accreta spectrum adherent and nonadherent sites in the same placenta. Of note, 2 platforms were used to generate libraries: the 10× Chromium and NanoString GeoMX Digital Spatial Profiler for single-cell and spatially resolved transcriptomes, respectively. Differential gene expression analysis was performed using a suite of bioinformatic tools (Seurat and GeoMxTools R packages). Correction for multiple testing was performed using Clipper. In situ hybridization was performed with RNAscope, and immunohistochemistry was used to assess protein expression. RESULTS: In creating a placenta accreta cell atlas, there were dramatic difference in the transcriptional profile by site of biopsy between placenta accreta spectrum and controls. Most of the differences were noted at the site of adherence; however, differences existed within the placenta between the adherent and nonadherent site of the same placenta in placenta accreta. Among all cell types, the endothelial-stromal populations exhibited the greatest difference in gene expression, driven by changes in collagen genes, namely collagen type III alpha 1 chain (COL3A1), growth factors, epidermal growth factor-like protein 6 (EGFL6), and hepatocyte growth factor (HGF), and angiogenesis-related genes, namely delta-like noncanonical Notch ligand 1 (DLK1) and platelet endothelial cell adhesion molecule-1 (PECAM1). Intraplacental tropism (adherent versus non-adherent sites in the same placenta) was driven by differences in endothelial-stromal cells with notable differences in bone morphogenic protein 5 (BMP5) and osteopontin (SPP1) in the adherent vs nonadherent site of placenta accreta spectrum. CONCLUSION: Placenta accreta spectrum disorders were characterized at single-cell resolution to gain insight into the pathophysiology of the disease. An atlas of the placenta at single cell resolution in accreta allows for understanding in the biology of the intimate maternal and fetal interaction. The contributions of stromal and endothelial cells were demonstrated through alterations in the extracellular matrix, growth factors, and angiogenesis. Transcriptional and protein changes in the stroma of placenta accreta spectrum shift the etiologic explanation away from "invasive trophoblast" to "loss of boundary limits" in the decidua. Gene targets identified in this study may be used to refine diagnostic assays in early pregnancy, track disease progression over time, and inform therapeutic discoveries.


Asunto(s)
Desprendimiento Prematuro de la Placenta , Placenta Accreta , Enfermedades Placentarias , Embarazo , Femenino , Recién Nacido , Humanos , Placenta Accreta/terapia , Células Endoteliales , Placenta/patología , Enfermedades Placentarias/patología , Péptidos y Proteínas de Señalización Intercelular , Decidua/patología , Endotelio/patología
6.
Nano Today ; 492023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38037608

RESUMEN

It is well-established that the combined use of nanostructured substrates and immunoaffinity agents can enhance the cell-capture performance of the substrates, thus offering a practical solution to effectively capture circulating tumor cells (CTCs) in peripheral blood. Developing along this strategy, this study first demonstrated a top-down approach for the fabrication of tetrahedral DNA nanostructure (TDN)-NanoGold substrates through the hierarchical integration of three functional constituents at various length-scales: a macroscale glass slide, sub-microscale self-organized NanoGold, and nanoscale self-assembled TDN. The TDN-NanoGold substrates were then assembled with microfluidic chaotic mixers to give TDN-NanoGold Click Chips. In conjunction with the use of copper (Cu)-catalyzed azide-alkyne cycloaddition (CuAAC)-mediated CTC capture and restriction enzyme-triggered CTC release, TDN-NanoGold Click Chips allow for effective enumeration and purification of CTCs with intact cell morphologies and preserved molecular integrity. To evaluate the clinical utility of TDN-NanoGold Click Chips, we used these devices to isolate and purify CTCs from patients with human papillomavirus (HPV)-positive (+) head and neck squamous cell carcinoma (HNSCC). The purified HPV(+) HNSCC CTCs were then subjected to RT-ddPCR testing, allowing for detection of E6/E7 oncogenes, the characteristic molecular signatures of HPV(+) HNSCC. We found that the resulting HPV(+) HNSCC CTC counts and E6/E7 transcript copy numbers are correlated with the treatment responses in the patients, suggesting the potential clinical utility of TDN-NanoGold Click Chips for non-invasive diagnostic applications of HPV(+) HNSCC.

7.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38139136

RESUMEN

Exosomes are extracellular vesicles that modulate essential physiological and pathological signals. Communication between cancer cells that express the von Hippel-Lindau (VHL) tumor suppressor gene and those that do not is instrumental to distant metastasis in renal cell carcinoma (RCC). In a novel metastasis model, VHL(-) cancer cells are the metastatic driver, while VHL(+) cells receive metastatic signals from VHL(-) cells and undergo aggressive transformation. This study investigates whether exosomes could be mediating metastatic crosstalk. Exosomes isolated from paired VHL(+) and VHL(-) cancer cell lines were assessed for physical, biochemical, and biological characteristics. Compared to the VHL(+) cells, VHL(-) cells produce significantly more exosomes that augment epithelial-to-mesenchymal transition (EMT) and migration of VHL(+) cells. Using a Cre-loxP exosome reporter system, the fluorescent color conversion and migration were correlated with dose-dependent delivery of VHL(-) exosomes. VHL(-) exosomes even induced a complete cascade of distant metastasis when added to VHL(+) tumor xenografts in a duck chorioallantoic membrane (dCAM) model, while VHL(+) exosomes did not. Therefore, this study supports that exosomes from VHL(-) cells could mediate critical cell-to-cell crosstalk to promote metastasis in RCC.


Asunto(s)
Carcinoma de Células Renales , Exosomas , Neoplasias Renales , Humanos , Carcinoma de Células Renales/patología , Neoplasias Renales/metabolismo , Exosomas/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
8.
bioRxiv ; 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37333287

RESUMEN

Background: The placenta, composed of chorionic villi, changes dramatically across gestation. Understanding differences in ongoing pregnancies are essential to identify the role of chorionic villi at specific times in gestation and develop biomarkers and prognostic indicators of maternal- fetal health. Methods: The normative mRNA profile is established using next-generation sequencing of 124 first trimester and 43 third trimester human placentas from ongoing healthy pregnancies. Stably expressed genes not different between trimesters and with low variability are identified. Differential expression analysis of first versus third trimester adjusted for fetal sex is performed, followed by a subanalysis with 23 matched pregnancies to control for subject variability using the same genetic and environmental background. Results: Placenta expresses 14,979 mRNAs above sequencing noise (TPM>0.66), with 1,545 stably expressed genes across gestation. Differentially expressed genes account for 86.7% of genes in the full cohort (FDR<0.05). Fold changes highly correlate between the full cohort and subanalysis (Pearson = 0.98). At stricter thresholds (FDR<0.001, fold change>1.5), there are 6,941 differentially expressed protein coding genes (3,206 upregulated in first and 3,735 upregulated in third trimester). Conclusion: This is the largest mRNA atlas of healthy human placenta across gestation, controlling for genetic and environmental factors, demonstrating substantial changes from first to third trimester in chorionic villi. Specific differences and stably expressed genes may be used to understand the specific role of the chorionic villi throughout gestation and develop first trimester biomarkers of placental health that transpire across gestation, which can be used for future development of biomarkers in maternal-fetal disease.

10.
ACS Appl Bio Mater ; 6(4): 1611-1620, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-36960953

RESUMEN

Efficiently delivering liposomal content to cells in a relatively uniform dose and patterned fashion, especially bypassing the degradative endocytosis pathway, is an important technology in cell culture and potentially to tissue engineering that still remains challenging. We developed a "nano-on-nano" platform technology that consists of the following three material features: (1) high density silicon nanopillars to create a pseudo-3-dimensional nanoenvironment for cell culturing, (2) thermoresponsive polymer grafted onto silicon nanopillars to form a responsive nanosubstrate, and (3) immobilized liposomes using a biotin-streptavidin-biotin conjugation. The working principle is that the liposomes are detached for cellular uptake upon thermal stimulation and high local liposome concentration between the cells and substrates drives the cellular uptake with nonendocytic pathways. Cryo-EM images confirms that liposomes are attached to form liposome-warped nanopillars. Upon thermal stimulation, an 8 times higher increase in the liposomal fluorescence intensity is observed compared to the conventional solution-phase liposome delivery, indicating that high local concentration drives liposome uptake with greater efficiency. Moreover, preliminary mechanistic studies reveal that these liposomes are taken up by nonendocytic pathways. The ability of our nano-on-nano delivery system that achieves efficient dose-uniform cellular delivery can open a unique era in cell and tissue engineering by controlling cell behaviors with the delivery of bioactive ingredient-loaded liposomes.


Asunto(s)
Biotina , Liposomas , Liposomas/química , Silicio/farmacología , Endocitosis
11.
Nano Today ; 482023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36711067

RESUMEN

Optimizing outcomes in prostate cancer (PCa) requires precision in characterization of disease status. This effort was directed at developing a PCa extracellular vesicle (EV) Digital Scoring Assay (DSA) for detecting metastasis and monitoring progression of PCa. PCa EV DSA is comprised of an EV purification device (i.e., EV Click Chip) and reverse-transcription droplet digital PCR that quantifies 11 PCa-relevant mRNA in purified PCa-derived EVs. A Met score was computed for each plasma sample based on the expression of the 11-gene panel using the weighted Z score method. Under optimized conditions, the EV Click Chips outperformed the ultracentrifugation or precipitation method of purifying PCa-derived EVs from artificial plasma samples. Using PCa EV DSA, the Met score distinguished metastatic (n = 20) from localized PCa (n = 20) with an area under the receiver operating characteristic curve of 0.88 (95% CI:0.78-0.98). Furthermore, longitudinal analysis of three PCa patients showed the dynamics of the Met scores reflected clinical behavior even when disease was undetectable by imaging. Overall, a sensitive PCa EV DSA was developed to identify metastatic PCa and reveal dynamic disease states noninvasively. This assay may complement current imaging tools and blood-based tests for timely detection of metastatic progression that can improve care for PCa patients.

12.
Hepatology ; 77(3): E53-E54, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36056798
13.
Nat Commun ; 13(1): 5566, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36175411

RESUMEN

Early cancer detection by cell-free DNA faces multiple challenges: low fraction of tumor cell-free DNA, molecular heterogeneity of cancer, and sample sizes that are not sufficient to reflect diverse patient populations. Here, we develop a cancer detection approach to address these challenges. It consists of an assay, cfMethyl-Seq, for cost-effective sequencing of the cell-free DNA methylome (with > 12-fold enrichment over whole genome bisulfite sequencing in CpG islands), and a computational method to extract methylation information and diagnose patients. Applying our approach to 408 colon, liver, lung, and stomach cancer patients and controls, at 97.9% specificity we achieve 80.7% and 74.5% sensitivity in detecting all-stage and early-stage cancer, and 89.1% and 85.0% accuracy for locating tissue-of-origin of all-stage and early-stage cancer, respectively. Our approach cost-effectively retains methylome profiles of cancer abnormalities, allowing us to learn new features and expand to other cancer types as training cohorts grow.


Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias Gástricas , Ácidos Nucleicos Libres de Células/genética , Análisis Costo-Beneficio , Detección Precoz del Cáncer , Epigenoma , Humanos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética
14.
Artículo en Inglés | MEDLINE | ID: mdl-36161213

RESUMEN

Hepatocellular carcinoma (HCC) is among the leading causes of cancer incidence and mortality worldwide. Surveillance of individuals with cirrhosis or other conditions that confer a high risk of HCC development is essential for early detection and improved overall survival. Biannual ultrasonography with or without alpha-fetoprotein is widely recommended as the standard method for HCC surveillance, but it has limited sensitivity in early disease and may be inadequate in certain individuals. This review article will provide a comprehensive overview of the current landscape of HCC surveillance, including the rationale and indications for HCC surveillance, standard methods for HCC surveillance, and their strengths/limitations. Alternative surveillance methods such as the role of cross-sectional imaging, emerging circulating biomarkers, as well as the problem of under-utilization of HCC surveillance and surveillance-related harms will also be discussed in this review.

15.
J Gastroenterol Hepatol ; 37(7): 1179-1190, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35543075

RESUMEN

Serum alpha-fetoprotein and radiologic imaging are the most commonly used tests for early diagnosis and dynamic monitoring of treatment response in hepatocellular carcinoma (HCC). However, the accuracy of these tests is limited, and they may not reflect the underlying biology of the tumor. Thus, developing highly accurate novel HCC biomarkers reflecting tumor biology is a clinically unmet need. Circulating tumor cells (CTCs) have long been proposed as a noninvasive biomarker in clinical oncology. Most CTC assays utilize immunoaffinity-based, size-based, and/or enrichment-free mechanisms followed by immunocytochemical staining to characterize CTCs. The prognostic value of HCC CTC enumeration has been extensively validated. Subsets of CTCs expressing mesenchymal markers are also reported to have clinical significance. In addition, researchers have been devoting their efforts to molecular characterizations of CTCs (e.g. genetics and transcriptomics) as molecular profiling can offer a more accurate readout and provide biological insights. As new molecular profiling techniques, such as digital polymerase chain reaction, are developed to detect minimal amounts of DNA/RNA, several research groups have established HCC CTC digital scoring systems to quantify clinically relevant gene panels. Given the versatility of CTCs to provide intact molecular and functional data that reflects the underlying tumor, CTCs have great potential as a noninvasive biomarker in HCC. Large-scale, prospective studies for HCC CTCs with a standardized protocol are necessary for successful clinical translation.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células Neoplásicas Circulantes , Biomarcadores , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Células Neoplásicas Circulantes/patología , Medicina de Precisión , Estudios Prospectivos
16.
Adv Sci (Weinh) ; 9(14): e2105853, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35486030

RESUMEN

Well-preserved molecular cargo in circulating extracellular vesicles (EVs) offers an ideal material for detecting oncogenic gene alterations in cancer patients, providing a noninvasive diagnostic solution for detection of disease status and monitoring treatment response. Therefore, technologies that conveniently isolate EVs with sufficient efficiency are desperately needed. Here, a lipid labeling and click chemistry-based EV capture platform ("Click Beads"), which is ideal for EV message ribonucleic acid (mRNA) assays due to its efficient, convenient, and rapid purification of EVs, enabling downstream molecular quantification using reverse transcription digital polymerase chain reaction (RT-dPCR) is described and demonstrated. Ewing sarcoma protein (EWS) gene rearrangements and kirsten rat sarcoma viral oncogene homolog (KRAS) gene mutation status are detected and quantified using EVs isolated by Click Beads and matched with those identified in biopsy specimens from Ewing sarcoma or pancreatic cancer patients. Moreover, the quantification of gene alterations can be used for monitoring treatment responses and disease progression.


Asunto(s)
Vesículas Extracelulares , Sarcoma de Ewing , Carcinogénesis/genética , Química Clic , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Genes ras , Humanos , Lípidos , Proteína EWS de Unión a ARN/genética , Proteína EWS de Unión a ARN/metabolismo , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo
18.
Biol Reprod ; 106(3): 551-567, 2022 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-35040930

RESUMEN

Maternal and fetal pregnancy outcomes related to placental function vary based on fetal sex, which may be due to sexually dimorphic epigenetic regulation of RNA expression. We identified sexually dimorphic miRNA expression throughout gestation in human placentae. Next-generation sequencing identified miRNA expression profiles in first and third trimester uncomplicated pregnancies using tissue obtained at chorionic villous sampling (n = 113) and parturition (n = 47). Sequencing analysis identified 986 expressed mature miRNAs from female and male placentae at first and third trimester (baseMean>10). Of these, 11 sexually dimorphic (FDR < 0.05) miRNAs were identified in the first and 4 in the third trimester, all upregulated in females, including miR-361-5p, significant in both trimesters. Sex-specific analyses across gestation identified 677 differentially expressed (DE) miRNAs at FDR < 0.05 and baseMean>10, with 508 DE miRNAs in common between female-specific and male-specific analysis (269 upregulated in first trimester, 239 upregulated in third trimester). Of those, miR-4483 had the highest fold changes across gestation. There were 62.5% more female exclusive differences with fold change>2 across gestation than male exclusive (52 miRNAs vs 32 miRNAs), indicating miRNA expression across human gestation is sexually dimorphic. Pathway enrichment analysis identified significant pathways that were differentially regulated in first and third trimester as well as across gestation. This work provides the normative sex dimorphic miRNA atlas in first and third trimester, as well as the sex-independent and sex-specific placenta miRNA atlas across gestation, which may be used to identify biomarkers of placental function and direct functional studies investigating placental sex differences.


Asunto(s)
MicroARNs , Placenta , Caracteres Sexuales , Epigénesis Genética , Femenino , Humanos , Masculino , MicroARNs/genética , Placenta/metabolismo , Embarazo , Primer Trimestre del Embarazo , Tercer Trimestre del Embarazo
19.
Liver Transpl ; 28(2): 200-214, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34664394

RESUMEN

Numerous studies in hepatocellular carcinoma (HCC) have proposed tissue-based gene signatures for individualized prognostic assessments. Here, we develop a novel circulating tumor cell (CTC)-based transcriptomic profiling assay to translate tissue-based messenger RNA (mRNA) signatures into a liquid biopsy setting for noninvasive HCC prognostication. The HCC-CTC mRNA scoring system combines the NanoVelcro CTC Assay for enriching HCC CTCs and the NanoString nCounter platform for quantifying the HCC-CTC Risk Score (RS) panel in enriched HCC CTCs. The prognostic role of the HCC-CTC RS was assessed in The Cancer Genome Atlas (TCGA) HCC cohort (n = 362) and validated in an independent clinical CTC cohort (n = 40). The HCC-CTC RS panel was developed through our integrated data analysis framework of 8 HCC tissue-based gene signatures and identified the top 10 prognostic genes (discoidin domain receptor tyrosine kinase 1 [DDR1], enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase [EHHADH], androgen receptor [AR], lumican [LUM], hydroxysteroid 17-beta dehydrogenase 6[HSD17B6], prostate transmembrane protein, androgen induced 1 [PMEPA1], tsukushi, small leucine rich proteoglycan [TSKU], N-terminal EF-hand calcium binding protein 2 [NECAB2], ladinin 1 [LAD1], solute carrier family 27 member 5 [SLC27A5]) highly expressed in HCC with low expressions in white blood cells. The panel accurately discriminated overall survival in TCGA HCC cohort (hazard ratio [HR], 2.0; 95% confidence interval [CI], 1.4-2.9). The combined use of the scoring system and HCC-CTC RS panel successfully distinguished artificial blood samples spiked with an aggressive HCC cell type, SNU-387, from those spiked with PLC/PRF/5 cells (P = 0.02). In the CTC validation cohort (n = 40), HCC-CTC RS remained an independent predictor of survival (HR, 5.7; 95% CI, 1.5-21.3; P = 0.009) after controlling for Model for End-Stage Liver Disease score, Barcelona Clinic Liver Cancer stage, and CTC enumeration count. Our study demonstrates a novel interdisciplinary approach to translate tissue-based gene signatures into a liquid biopsy setting. This noninvasive approach will allow real-time disease profiling and dynamic prognostication of HCC.


Asunto(s)
Carcinoma Hepatocelular , Enfermedad Hepática en Estado Terminal , Neoplasias Hepáticas , Trasplante de Hígado , Células Neoplásicas Circulantes , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Células Neoplásicas Circulantes/metabolismo , Pronóstico , ARN Mensajero/genética , Índice de Severidad de la Enfermedad
20.
Biosens Bioelectron ; 199: 113854, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34896918

RESUMEN

Circulating tumor cell (CTC) clusters are present in cancer patients with severe metastasis, resulting in poor clinical outcomes. However, CTC clusters have not been studied as extensively as single CTCs, and the clinical utility of CTC clusters remains largely unknown. In this study, we aim sought to explore the feasibility of NanoVelcro Chips to simultaneously detect both single CTCs and CTC clusters with negligible perturbation to their intrinsic properties in neuroendocrine tumors (NETs). We discovered frequent CTC clusters in patients with advanced NETs and examined their potential roles, together with single NET CTCs, as novel biomarkers of patient response following peptide receptor radionuclide therapy (PRRT). We observed dynamic changes in both total NET CTCs and NET CTC cluster counts in NET patients undergoing PRRT which correlated with clinical outcome. These preliminary findings suggest that CTC clusters, along with single CTCs, offer a potential non-invasive option to monitor the treatment response in NET patients undergoing PRRT.


Asunto(s)
Técnicas Biosensibles , Células Neoplásicas Circulantes , Tumores Neuroendocrinos , Biomarcadores de Tumor , Humanos , Metástasis de la Neoplasia , Células Neoplásicas Circulantes/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...